gTLD | Full Legal Name | E-mail suffix | Detail | .dog | Koko Mill, LLC | donuts.co | View |
Q23 CHAR: 22971
TLD Applicant is applying to become an ICANN accredited Top Level Domain (TLD) registry. TLD Applicant meets the operational, technical, and financial capability requirements to pursue, secure and operate the TLD registry. The responses to technical capability questions were prepared to demonstrate, with confidence, that the technical capabilities of TLD Applicant meet and substantially exceed the requirements proposed by ICANN.
The following response describes our registry services, as implemented by Donuts and our partners. Such partners include Demand Media Europe Limited (DMEL) for back-end registry services; AusRegistry Pty Ltd. (ARI) for Domain Name System (DNS) services and Domain Name Service Security Extensions (DNSSEC); an independent consultant for abuse mitigation and prevention consultation; Equinix and SuperNap for datacenter facilities and infrastructure; and Iron Mountain Intellectual Property Management, Inc. (Iron Mountain) for data escrow services. For simplicity, the term “company” and the use of the possessive pronouns “we”, “us”, “our”, “ours”, etc., all refer collectively to Donuts and our subcontracted service providers.
DMEL is a wholly-owned subsidiary of DMIH Limited, a well-capitalized Irish corporation whose ultimate parent company is Demand Media, Inc., a leading content and social media company listed on the New York Stock Exchange (ticker: DMD). DMEL is structured to operate a robust and reliable Shared Registration System by leveraging the infrastructure and expertise of DMIH and Demand Media, Inc., which includes years of experience in the operation side for domain names in both gTLDs and ccTLDs for over 10 years.
1.0. EXECUTIVE SUMMARY
We offer all of the customary services for proper operation of a gTLD registry using an approach designed to support the security and stability necessary to ensure continuous uptime and optimal registry functionality for registrants and Internet users alike.
2.0. REGISTRY SERVICES
2.1. Receipt of Data from registrars
The process of registering a domain name and the subsequent maintenance involves interactions between registrars and the registry. These interactions are facilitated by the registry through the Shared Registration System (SRS) through two interfaces:
- EPP: A standards-based XML protocol over a secure network channel.
- Web: A web based interface that exposes all of the same functionality as EPP yet accessible through a web browser.
Registrants wishing to register and maintain their domain name registrations must do so through an ICANN accredited registrar. The XML protocol, called the Extensible Provisioning Protocol (EPP) is the standard protocol widely used by registrars to communicate provisioning actions. Alternatively, registrars may use the web interface to create and manage registrations.
The registry is implemented as a “thick” registry meaning that domain registrations must have contact information associated with each. Contact information will be collected by registrars and associated with domain registrations.
2.1.1. SRS EPP Interface
The SRS EPP Interface is provided by a software service that provides network based connectivity. The EPP software is highly compliant with all appropriate RFCs including:
- RFC 5730 Extensible Provisioning Protocol (EPP)
- RFC 5731 Extensible Provisioning Protocol (EPP) Domain Name Mapping
- RFC 5732 Extensible Provisioning Protocol (EPP) Host Mapping
- RFC 5733 Extensible Provisioning Protocol (EPP) Contact Mapping
- RFC 5734 Extensible Provisioning Protocol (EPP) Transport over TCP
- RFC 5910 Domain Name System (DNS) Security Extensions for Extensible Provisioning Protocol (EPP)
- RFC 3915 Domain Registry Grace Period Mapping for EPP
2.1.1.1. SRS EPP Interface Security Considerations
Security precautions are put in place to ensure transactions are received only from authorized registrars in a private, secure manner. Registrars must provide the registry with narrow subnet ranges, allowing the registry to restrict network connections that originate only from these pre-arranged networks. The source IP address is verified against the authentication data received from the connection to further validate the source of the connection. Registrars may only establish a limited number of connections and the network traffic is rate limited to ensure that all registrars receive the same quality of service. Network connections to the EPP server must be secured with TLS. The revocation status and validity of the certificate are checked.
Successful negotiation of a TLS session begins the process of authentication using the protocol elements of EPP. Registrars are not permitted to continue without a successful EPP session establishment. The EPP server validates the credential information passed by the registrar along with validation of:
- Certificate revocation status
- Certificate chain
- Certificate Common Name matches the Common Name the registry has listed for the source IP address
- User name and password are correct and match those listed for the source IP address
In the event a registrar creates a level of activity that threatens the service quality of other registrars, the service has the ability to rate limit individual registrars.
2.1.1.2. SRS EPP Interface Stability Considerations
To ensure the stability of the EPP Interface software, strict change controls and access controls are in place. Changes to the software must be approved by management and go through a rigorous testing and staged deployment procedure.
Additional stability is achieved by carefully regulating the available computing resources. A policy of conservative usage thresholds leaves an equitable amount of computing resources available to handle spikes and service management.
2.1.2. SRS Web Interface
The SRS web interface is an alternative way to access EPP functionality using a web interface, providing the features necessary for effective operations of the registry. This interface uses the HTTPS protocol for secure web communication. Because users can be located worldwide, as with the EPP interface, the web interface is available to all registrars over multiple network paths.
Additional functionality is available to registrars to assist them in managing their account. For instance, registrars are able to view their account balance in near real time as well as the status of the registry services. In addition, notifications that are sent out in email are available for viewing.
2.1.2.1. Web Interface Security Considerations
Only registrars are authorized to use the SRS web interface, and therefore the web interface has several security measures to prevent abuse. The web interface requires an encrypted network channel using the HTTPS protocol. Attempts to access the interface through a clear channel are redirected to the encrypted channel.
The web interface restricts access by requiring each user to present authentication credentials before proceeding. In addition to the typical user name and password combinations, the web interface also requires the user to possess a hardware security key as a second factor of authentication.
Registrars are provided a tool to create and manage users that are associated with their account. With these tools, they can set access and authorization levels for their staff.
2.1.2.2. Web Interface Stability Considerations
Both the EPP interface and web interface use a common service provider to perform the work required to fulfill their requests. This provides consistency across both interfaces and ensures all policies and security rules are applied.
The software providing services for both interfaces executes on a farm of servers, distributing the load more evenly ensuring stability is maintained.
2.2. Dissemination of TLD Zone Files
2.2.1. Communication of Status Information of TLD Zone Servers to Registrars
The status of TLD zone servers and their ability to reflect changes in the SRS is of great importance to registrars and Internet users alike. We ensure that any change from normal operations is communicated to the relevant stakeholders as soon as is appropriate. Such communication might be prior to the status change, during the status change and⁄or after the status change (and subsequent reversion to normal) — as appropriate to the party being informed and the circumstance of the status change.
Normal operations are:
- DNS servers respond within SLAs for DNS resolution.
- Changes in the SRS are reflected in the zone file according to the DNS update time SLA.
The SLAs are those from Specification 10 of the Registry Agreement.
A deviation from normal operations, whether it is registry wide or restricted to a single DNS node, will result in the appropriate status communication being sent.
2.2.2. Communication Policy
We maintain close communication with registrars regarding the performance and consistency of the TLD zone servers.
A contact database containing relevant contact information for each registrar is maintained. In many cases, this includes multiple forms of contact, including email, phone and physical mailing address. Additionally, up-to-date status information of the TLD zone servers is provided within the SRS Web Interface.
Communication using the registrar contact information discussed above will occur prior to any maintenance that has the potential to effect the access to, consistency of, or reliability of the TLD zone servers. If such maintenance is required within a short timeframe, immediate communication occurs using the above contact information. In either case, the nature of the maintenance and how it affects the consistency or accessibility of the TLD zone servers, and the estimated time for full restoration, are included within the communication.
That being said, the TLD zone server infrastructure has been designed in such a way that we expect no downtime. Only individual sites will potentially require downtime for maintenance; however the DNS service itself will continue to operate with 100% availability.
2.2.3. Security and Stability Considerations
We restrict zone server status communication to registrars, thereby limiting the scope for malicious abuse of any maintenance window. Additionally, we ensure registrars have effective operational procedures to deal with any status change of the TLD nameservers and will seek to align its communication policy to those procedures.
2.3. Zone File Access Provider Integration
Individuals or organizations that wish to have a copy of the full zone file can do so using the Zone Data Access service. This process is still evolving; however the basic requirements are unlikely to change. All registries will publish the zone file in a common format accessible via secure FTP at an agreed URL.
DMEL will fully comply with the processes and procedures dictated by the Centralized Zone Data Access Provider (CZDA Provider or what it evolves into) for adding and removing Zone File access consumers from its authentication systems. This includes:
- Zone file format and location.
- Availability of the zone file access host via FTP.
- Logging of requests to the service (including the IP address, time, user and activity log).
- Access frequency.
2.4. Zone File Update
To ensure changes within the SRS are reflected in the zone file rapidly and securely, we update the zone file on the TLD zone servers following a staged but rapid propagation of zone update information from the SRS, outwards to the TLD zone servers - which are visible to the Internet. As changes to the SRS data occur, those changes are updated to isolated systems which act as the authoritative primary server for the zone, but remain inaccessible to systems outside our network. The primary servers notify the designated secondary servers, which service queries for the TLD zone from the public. Upon notification, the secondary servers transfer the incremental changes to the zone and publicly present those changes.
The mechanisms for ensuring consistency within and between updates are fully implemented in our TLD zone update procedures. These mechanisms ensure updates are quickly propagated while the data remains consistent within each incremental update, regardless of the speed or order of individual update transactions.
2.5. Operation of Zone Servers
ARI maintains TLD zone servers which act as the authoritative servers to which the TLD is delegated.
2.5.1. Security and Operational Considerations of Zone Server Operations
The potential risks associated with operating TLD zone servers are recognized by us such that we will perform the steps required to protect the integrity and consistency of the information they provide, as well as to protect the availability and accessibility of those servers to hosts on the Internet. The TLD zone servers comply with all relevant RFCs for DNS and DNSSEC, as well as BCPs for the operation and hosting of DNS servers. The TLD zone servers will be updated to support any relevant new enhancements or improvements adopted by the IETF.
The DNS servers are geographically dispersed across multiple secure data centers in strategic locations around the world. By combining multi-homed servers and geographic diversity, ARI’s zone servers remain impervious to site level, supplier level or geographic level operational disruption.
The TLD zone servers are protected from accessibility loss by malicious intent or misadventure, via the provision of significant over-capacity of resources and access paths. Multiple independent network paths are provided to each TLD zone server and the query servicing capacity of the network exceeds the extremely conservatively anticipated peak load requirements by at least 10 times, to prevent loss of service should query loads significantly increase.
As well as the authentication, authorization and consistency checks carried out by the registrar access systems and DNS update mechanisms, ARI reduces the scope for alteration of DNS data by following strict DNS operational practices:
- TLD zone servers are not shared with other services.
- The primary authoritative TLD zone server is inaccessible outside ARI’s network.
- TLD zone servers only serve authoritative information.
- The TLD zone is signed with DNSSEC and a DNSSEC Practice⁄Policy Statement published.
2.6. Dissemination of Domain Registration Information
Domain name registration information is required for a variety of purposes. Our registry provides this information through the required WHOIS service through a standard text based network protocol on port 43. Whois also is provided on the registry’s web site using a standard web interface. Both interfaces are publically available at no cost to the user and are reachable worldwide.
The information displayed by the Whois service consists not only of the domain name but also of relevant contact information associated with the domain. It also identifies nameserver delegation and the registrar of record. This service is available to any Internet user, and use of it does not require prior authorization or permission.
2.6.1. Whois Port 43 Interface
The Whois port 43 interface consists of a standard Transmission Control Protocol (TCP) server that answers requests for information over port 43 in compliance with IETF RFC 3912. For each query, the TCP server accepts the connection over port 43 and then waits for a set time for the query to be sent. This communication occurs via clear, unencrypted ASCII text. If a properly formatted and valid query is received, the registry database is queried for the registration data. If registration data exists, it is returned to the service where it is then formatted and delivered to the requesting client. Each query connection is short-lived. Once the output is transmitted, the server closes the connection.
2.6.2. Whois Web Interface
The Whois web interface also uses clear, unencrypted text. The web interface is in an HTML format suitable for web browsers. This interface is also available over an encrypted channel on port 43 using the HTTPS protocol.
2.6.3. Security and Stability Considerations
Abuse of the Whois system through data mining is a concern as it can impact system performance and reduce the quality of service to legitimate users. The Whois system mitigates this type of abuse by detecting and limiting bulk query access from single sources. It does this in two ways: 1) by rate limiting queries by non-authorized parties; and 2) by ensuring all queries result in responses that do not include data sets representing significant portions of the registration database.
In addition, the Whois web interface adds a simple challenge-response CAPCHA that requires a user to type in the characters displayed in image format.
Both systems have blacklist functionality to provide a complete block to individual IPs or IP ranges.
2.7. Internationalized Domain Names (IDNs)
An Internationalized Domain Name (IDN) contains at least one label that is displayed in a specific language script in IDN aware software. We will offer registration of second level IDN labels at launch,
IDNs are published into the TLD zone. The SRS EPP and Web Interfaces also support IDNs.
The IDN implementation is fully compliant with the IDNA 2008 suite of standards (RFC 5890, 5891, 5892 and 5893) as well as the ICANN Guidelines for the Implementation of IDN Version 3.0 〈http:⁄⁄www.icann.org⁄en⁄resources⁄idn⁄implementation-guidelines〉. To ensure stability and security, we have adopted a conservative approach in our IDN registration policies, as well as technical implementation.
All IDN registrations must be requested using the A-label form, and accompanied by an RFC 5646 language tag identifying the corresponding language table published by the registry. The candidate A-label is processed according to the registration protocol as specified in Section 4 of RFC 5891, with full U-label validation. Specifically, the “Registry Restrictions” steps specified in Section 4.3 of RFC 5891 are implemented by validating the U-label against the identified language table to ensure that the set of characters in the U-label is a proper subset of the character repertoire listed in the language table.
2.7.1. IDN Stability Considerations
To avoid the intentional or accidental registration of visually similar characters, and to avoid identity confusion between domains, there are several restrictions on the registration of IDNs.
Domains registered within a particular language are restricted to only the characters of that language. This avoids the use of visually similar characters within one language which mimic the appearance of a label within another language, regardless of whether that label is already within the DNS or not.
Child domains are restricted to a specific language and registrations are prevented in one language being confused with a registration in another language; for example Cyrillic а (U+0430) and Latin a (U+0061).
2.8. DNSSEC
DNSSEC provides a set of extensions to the DNS that allow an Internet user (normally the resolver acting on a user’s behalf) to validate that the DNS responses they receive were not manipulated en-route.
This type of fraud, commonly called ‘man in the middle’, allows a malicious party to misdirect Internet users. DNSSEC allows a domain owner to sign their domain and to publish the signature, so that all DNS consumers who visit that domain can validate that the responses they receive are as the domain owner intended.
Registries, as the operators of the parent domain for registrants, must publish the DNSSEC material received from registrants, so that Internet users can trust the material they receive from the domain owner. This is commonly referred to as a “chain of trust.” Internet users trust the root (operated by IANA), which publishes the registries’ DNSSEC material, therefore registries inherit this trust. Domain owners within the TLD subsequently inherit trust from the parent domain when the registry publishes their DNSSEC material.
In accordance with new gTLD requirements, the TLD zone will be DNSSEC signed and the receipt of DNSSEC material from registrars for child domains is supported in all provisioning systems.
2.8.1. Stability and Operational Considerations for DNSSEC
2.8.1.1. DNSSEC Practice Statement
ARI’s DNSSEC Practice Statement is included in our response to Question 43. The DPS following the guidelines set out in the draft IETF DNSOP DNSSEC DPS Framework document.
2.8.1.2. Resolution Stability
DNSSEC is considered to have made the DNS more trustworthy; however some transitional considerations need to be taken into account. DNSSEC increases the size and complexity of DNS responses. ARI ensures the TLD zone servers are accessible and offer consistent responses over UDP and TCP.
The increased UDP and TCP traffic which results from DNSSEC is accounted for in both network path access and TLD zone server capacity. ARI will ensure that capacity planning appropriately accommodates the expected increase in traffic over time.
ARI complies with all relevant RFCs and best practice guides in operating a DNSSEC-signed TLD. This includes conforming to algorithm updates as appropriate. To ensure Key Signing Key Rollover procedures for child domains are predictable, DS records will be published as soon as they are received via either the EPP server or SRS Web Interface. This allows child domain operators to rollover their keys with the assurance that their timeframes for both old and new keys are reliable.
3.0. APPROACH TO SECURITY AND STABILITY
Stability and security of the Internet is an important consideration for the registry system. To ensure that the registry services are reliably secured and remain stable under all conditions, DMEL takes a conservative approach with the operation and architecture of the registry system.
By architecting all registry services to use the least privileged access to systems and data, risk is significantly reduced for other systems and the registry services as a whole should any one service become compromised. By continuing that principal through to our procedures and processes, we ensure that only access that is necessary to perform tasks is given. ARI has a comprehensive approach to security modeled of the ISO27001 series of standards and explored further in the relevant questions of this response.
By ensuring all our services adhering to all relevant standards, DMEL ensures that entities which interact with the registry services do so in a predictable and consistent manner. When variations or enhancements to services are made, they are also aligned with the appropriate interoperability standards.
gTLD | Full Legal Name | E-mail suffix | Detail | .university | Little Station, LLC | donuts.co | View |
Q23 CHAR: 22971
TLD Applicant is applying to become an ICANN accredited Top Level Domain (TLD) registry. TLD Applicant meets the operational, technical, and financial capability requirements to pursue, secure and operate the TLD registry. The responses to technical capability questions were prepared to demonstrate, with confidence, that the technical capabilities of TLD Applicant meet and substantially exceed the requirements proposed by ICANN.
The following response describes our registry services, as implemented by Donuts and our partners. Such partners include Demand Media Europe Limited (DMEL) for back-end registry services; AusRegistry Pty Ltd. (ARI) for Domain Name System (DNS) services and Domain Name Service Security Extensions (DNSSEC); an independent consultant for abuse mitigation and prevention consultation; Equinix and SuperNap for datacenter facilities and infrastructure; and Iron Mountain Intellectual Property Management, Inc. (Iron Mountain) for data escrow services. For simplicity, the term “company” and the use of the possessive pronouns “we”, “us”, “our”, “ours”, etc., all refer collectively to Donuts and our subcontracted service providers.
DMEL is a wholly-owned subsidiary of DMIH Limited, a well-capitalized Irish corporation whose ultimate parent company is Demand Media, Inc., a leading content and social media company listed on the New York Stock Exchange (ticker: DMD). DMEL is structured to operate a robust and reliable Shared Registration System by leveraging the infrastructure and expertise of DMIH and Demand Media, Inc., which includes years of experience in the operation side for domain names in both gTLDs and ccTLDs for over 10 years.
1.0. EXECUTIVE SUMMARY
We offer all of the customary services for proper operation of a gTLD registry using an approach designed to support the security and stability necessary to ensure continuous uptime and optimal registry functionality for registrants and Internet users alike.
2.0. REGISTRY SERVICES
2.1. Receipt of Data from registrars
The process of registering a domain name and the subsequent maintenance involves interactions between registrars and the registry. These interactions are facilitated by the registry through the Shared Registration System (SRS) through two interfaces:
- EPP: A standards-based XML protocol over a secure network channel.
- Web: A web based interface that exposes all of the same functionality as EPP yet accessible through a web browser.
Registrants wishing to register and maintain their domain name registrations must do so through an ICANN accredited registrar. The XML protocol, called the Extensible Provisioning Protocol (EPP) is the standard protocol widely used by registrars to communicate provisioning actions. Alternatively, registrars may use the web interface to create and manage registrations.
The registry is implemented as a “thick” registry meaning that domain registrations must have contact information associated with each. Contact information will be collected by registrars and associated with domain registrations.
2.1.1. SRS EPP Interface
The SRS EPP Interface is provided by a software service that provides network based connectivity. The EPP software is highly compliant with all appropriate RFCs including:
- RFC 5730 Extensible Provisioning Protocol (EPP)
- RFC 5731 Extensible Provisioning Protocol (EPP) Domain Name Mapping
- RFC 5732 Extensible Provisioning Protocol (EPP) Host Mapping
- RFC 5733 Extensible Provisioning Protocol (EPP) Contact Mapping
- RFC 5734 Extensible Provisioning Protocol (EPP) Transport over TCP
- RFC 5910 Domain Name System (DNS) Security Extensions for Extensible Provisioning Protocol (EPP)
- RFC 3915 Domain Registry Grace Period Mapping for EPP
2.1.1.1. SRS EPP Interface Security Considerations
Security precautions are put in place to ensure transactions are received only from authorized registrars in a private, secure manner. Registrars must provide the registry with narrow subnet ranges, allowing the registry to restrict network connections that originate only from these pre-arranged networks. The source IP address is verified against the authentication data received from the connection to further validate the source of the connection. Registrars may only establish a limited number of connections and the network traffic is rate limited to ensure that all registrars receive the same quality of service. Network connections to the EPP server must be secured with TLS. The revocation status and validity of the certificate are checked.
Successful negotiation of a TLS session begins the process of authentication using the protocol elements of EPP. Registrars are not permitted to continue without a successful EPP session establishment. The EPP server validates the credential information passed by the registrar along with validation of:
- Certificate revocation status
- Certificate chain
- Certificate Common Name matches the Common Name the registry has listed for the source IP address
- User name and password are correct and match those listed for the source IP address
In the event a registrar creates a level of activity that threatens the service quality of other registrars, the service has the ability to rate limit individual registrars.
2.1.1.2. SRS EPP Interface Stability Considerations
To ensure the stability of the EPP Interface software, strict change controls and access controls are in place. Changes to the software must be approved by management and go through a rigorous testing and staged deployment procedure.
Additional stability is achieved by carefully regulating the available computing resources. A policy of conservative usage thresholds leaves an equitable amount of computing resources available to handle spikes and service management.
2.1.2. SRS Web Interface
The SRS web interface is an alternative way to access EPP functionality using a web interface, providing the features necessary for effective operations of the registry. This interface uses the HTTPS protocol for secure web communication. Because users can be located worldwide, as with the EPP interface, the web interface is available to all registrars over multiple network paths.
Additional functionality is available to registrars to assist them in managing their account. For instance, registrars are able to view their account balance in near real time as well as the status of the registry services. In addition, notifications that are sent out in email are available for viewing.
2.1.2.1. Web Interface Security Considerations
Only registrars are authorized to use the SRS web interface, and therefore the web interface has several security measures to prevent abuse. The web interface requires an encrypted network channel using the HTTPS protocol. Attempts to access the interface through a clear channel are redirected to the encrypted channel.
The web interface restricts access by requiring each user to present authentication credentials before proceeding. In addition to the typical user name and password combinations, the web interface also requires the user to possess a hardware security key as a second factor of authentication.
Registrars are provided a tool to create and manage users that are associated with their account. With these tools, they can set access and authorization levels for their staff.
2.1.2.2. Web Interface Stability Considerations
Both the EPP interface and web interface use a common service provider to perform the work required to fulfill their requests. This provides consistency across both interfaces and ensures all policies and security rules are applied.
The software providing services for both interfaces executes on a farm of servers, distributing the load more evenly ensuring stability is maintained.
2.2. Dissemination of TLD Zone Files
2.2.1. Communication of Status Information of TLD Zone Servers to Registrars
The status of TLD zone servers and their ability to reflect changes in the SRS is of great importance to registrars and Internet users alike. We ensure that any change from normal operations is communicated to the relevant stakeholders as soon as is appropriate. Such communication might be prior to the status change, during the status change and⁄or after the status change (and subsequent reversion to normal) — as appropriate to the party being informed and the circumstance of the status change.
Normal operations are:
- DNS servers respond within SLAs for DNS resolution.
- Changes in the SRS are reflected in the zone file according to the DNS update time SLA.
The SLAs are those from Specification 10 of the Registry Agreement.
A deviation from normal operations, whether it is registry wide or restricted to a single DNS node, will result in the appropriate status communication being sent.
2.2.2. Communication Policy
We maintain close communication with registrars regarding the performance and consistency of the TLD zone servers.
A contact database containing relevant contact information for each registrar is maintained. In many cases, this includes multiple forms of contact, including email, phone and physical mailing address. Additionally, up-to-date status information of the TLD zone servers is provided within the SRS Web Interface.
Communication using the registrar contact information discussed above will occur prior to any maintenance that has the potential to effect the access to, consistency of, or reliability of the TLD zone servers. If such maintenance is required within a short timeframe, immediate communication occurs using the above contact information. In either case, the nature of the maintenance and how it affects the consistency or accessibility of the TLD zone servers, and the estimated time for full restoration, are included within the communication.
That being said, the TLD zone server infrastructure has been designed in such a way that we expect no downtime. Only individual sites will potentially require downtime for maintenance; however the DNS service itself will continue to operate with 100% availability.
2.2.3. Security and Stability Considerations
We restrict zone server status communication to registrars, thereby limiting the scope for malicious abuse of any maintenance window. Additionally, we ensure registrars have effective operational procedures to deal with any status change of the TLD nameservers and will seek to align its communication policy to those procedures.
2.3. Zone File Access Provider Integration
Individuals or organizations that wish to have a copy of the full zone file can do so using the Zone Data Access service. This process is still evolving; however the basic requirements are unlikely to change. All registries will publish the zone file in a common format accessible via secure FTP at an agreed URL.
DMEL will fully comply with the processes and procedures dictated by the Centralized Zone Data Access Provider (CZDA Provider or what it evolves into) for adding and removing Zone File access consumers from its authentication systems. This includes:
- Zone file format and location.
- Availability of the zone file access host via FTP.
- Logging of requests to the service (including the IP address, time, user and activity log).
- Access frequency.
2.4. Zone File Update
To ensure changes within the SRS are reflected in the zone file rapidly and securely, we update the zone file on the TLD zone servers following a staged but rapid propagation of zone update information from the SRS, outwards to the TLD zone servers - which are visible to the Internet. As changes to the SRS data occur, those changes are updated to isolated systems which act as the authoritative primary server for the zone, but remain inaccessible to systems outside our network. The primary servers notify the designated secondary servers, which service queries for the TLD zone from the public. Upon notification, the secondary servers transfer the incremental changes to the zone and publicly present those changes.
The mechanisms for ensuring consistency within and between updates are fully implemented in our TLD zone update procedures. These mechanisms ensure updates are quickly propagated while the data remains consistent within each incremental update, regardless of the speed or order of individual update transactions.
2.5. Operation of Zone Servers
ARI maintains TLD zone servers which act as the authoritative servers to which the TLD is delegated.
2.5.1. Security and Operational Considerations of Zone Server Operations
The potential risks associated with operating TLD zone servers are recognized by us such that we will perform the steps required to protect the integrity and consistency of the information they provide, as well as to protect the availability and accessibility of those servers to hosts on the Internet. The TLD zone servers comply with all relevant RFCs for DNS and DNSSEC, as well as BCPs for the operation and hosting of DNS servers. The TLD zone servers will be updated to support any relevant new enhancements or improvements adopted by the IETF.
The DNS servers are geographically dispersed across multiple secure data centers in strategic locations around the world. By combining multi-homed servers and geographic diversity, ARI’s zone servers remain impervious to site level, supplier level or geographic level operational disruption.
The TLD zone servers are protected from accessibility loss by malicious intent or misadventure, via the provision of significant over-capacity of resources and access paths. Multiple independent network paths are provided to each TLD zone server and the query servicing capacity of the network exceeds the extremely conservatively anticipated peak load requirements by at least 10 times, to prevent loss of service should query loads significantly increase.
As well as the authentication, authorization and consistency checks carried out by the registrar access systems and DNS update mechanisms, ARI reduces the scope for alteration of DNS data by following strict DNS operational practices:
- TLD zone servers are not shared with other services.
- The primary authoritative TLD zone server is inaccessible outside ARI’s network.
- TLD zone servers only serve authoritative information.
- The TLD zone is signed with DNSSEC and a DNSSEC Practice⁄Policy Statement published.
2.6. Dissemination of Domain Registration Information
Domain name registration information is required for a variety of purposes. Our registry provides this information through the required WHOIS service through a standard text based network protocol on port 43. Whois also is provided on the registry’s web site using a standard web interface. Both interfaces are publically available at no cost to the user and are reachable worldwide.
The information displayed by the Whois service consists not only of the domain name but also of relevant contact information associated with the domain. It also identifies nameserver delegation and the registrar of record. This service is available to any Internet user, and use of it does not require prior authorization or permission.
2.6.1. Whois Port 43 Interface
The Whois port 43 interface consists of a standard Transmission Control Protocol (TCP) server that answers requests for information over port 43 in compliance with IETF RFC 3912. For each query, the TCP server accepts the connection over port 43 and then waits for a set time for the query to be sent. This communication occurs via clear, unencrypted ASCII text. If a properly formatted and valid query is received, the registry database is queried for the registration data. If registration data exists, it is returned to the service where it is then formatted and delivered to the requesting client. Each query connection is short-lived. Once the output is transmitted, the server closes the connection.
2.6.2. Whois Web Interface
The Whois web interface also uses clear, unencrypted text. The web interface is in an HTML format suitable for web browsers. This interface is also available over an encrypted channel on port 43 using the HTTPS protocol.
2.6.3. Security and Stability Considerations
Abuse of the Whois system through data mining is a concern as it can impact system performance and reduce the quality of service to legitimate users. The Whois system mitigates this type of abuse by detecting and limiting bulk query access from single sources. It does this in two ways: 1) by rate limiting queries by non-authorized parties; and 2) by ensuring all queries result in responses that do not include data sets representing significant portions of the registration database.
In addition, the Whois web interface adds a simple challenge-response CAPCHA that requires a user to type in the characters displayed in image format.
Both systems have blacklist functionality to provide a complete block to individual IPs or IP ranges.
2.7. Internationalized Domain Names (IDNs)
An Internationalized Domain Name (IDN) contains at least one label that is displayed in a specific language script in IDN aware software. We will offer registration of second level IDN labels at launch,
IDNs are published into the TLD zone. The SRS EPP and Web Interfaces also support IDNs.
The IDN implementation is fully compliant with the IDNA 2008 suite of standards (RFC 5890, 5891, 5892 and 5893) as well as the ICANN Guidelines for the Implementation of IDN Version 3.0 〈http:⁄⁄www.icann.org⁄en⁄resources⁄idn⁄implementation-guidelines〉. To ensure stability and security, we have adopted a conservative approach in our IDN registration policies, as well as technical implementation.
All IDN registrations must be requested using the A-label form, and accompanied by an RFC 5646 language tag identifying the corresponding language table published by the registry. The candidate A-label is processed according to the registration protocol as specified in Section 4 of RFC 5891, with full U-label validation. Specifically, the “Registry Restrictions” steps specified in Section 4.3 of RFC 5891 are implemented by validating the U-label against the identified language table to ensure that the set of characters in the U-label is a proper subset of the character repertoire listed in the language table.
2.7.1. IDN Stability Considerations
To avoid the intentional or accidental registration of visually similar characters, and to avoid identity confusion between domains, there are several restrictions on the registration of IDNs.
Domains registered within a particular language are restricted to only the characters of that language. This avoids the use of visually similar characters within one language which mimic the appearance of a label within another language, regardless of whether that label is already within the DNS or not.
Child domains are restricted to a specific language and registrations are prevented in one language being confused with a registration in another language; for example Cyrillic а (U+0430) and Latin a (U+0061).
2.8. DNSSEC
DNSSEC provides a set of extensions to the DNS that allow an Internet user (normally the resolver acting on a user’s behalf) to validate that the DNS responses they receive were not manipulated en-route.
This type of fraud, commonly called ‘man in the middle’, allows a malicious party to misdirect Internet users. DNSSEC allows a domain owner to sign their domain and to publish the signature, so that all DNS consumers who visit that domain can validate that the responses they receive are as the domain owner intended.
Registries, as the operators of the parent domain for registrants, must publish the DNSSEC material received from registrants, so that Internet users can trust the material they receive from the domain owner. This is commonly referred to as a “chain of trust.” Internet users trust the root (operated by IANA), which publishes the registries’ DNSSEC material, therefore registries inherit this trust. Domain owners within the TLD subsequently inherit trust from the parent domain when the registry publishes their DNSSEC material.
In accordance with new gTLD requirements, the TLD zone will be DNSSEC signed and the receipt of DNSSEC material from registrars for child domains is supported in all provisioning systems.
2.8.1. Stability and Operational Considerations for DNSSEC
2.8.1.1. DNSSEC Practice Statement
ARI’s DNSSEC Practice Statement is included in our response to Question 43. The DPS following the guidelines set out in the draft IETF DNSOP DNSSEC DPS Framework document.
2.8.1.2. Resolution Stability
DNSSEC is considered to have made the DNS more trustworthy; however some transitional considerations need to be taken into account. DNSSEC increases the size and complexity of DNS responses. ARI ensures the TLD zone servers are accessible and offer consistent responses over UDP and TCP.
The increased UDP and TCP traffic which results from DNSSEC is accounted for in both network path access and TLD zone server capacity. ARI will ensure that capacity planning appropriately accommodates the expected increase in traffic over time.
ARI complies with all relevant RFCs and best practice guides in operating a DNSSEC-signed TLD. This includes conforming to algorithm updates as appropriate. To ensure Key Signing Key Rollover procedures for child domains are predictable, DS records will be published as soon as they are received via either the EPP server or SRS Web Interface. This allows child domain operators to rollover their keys with the assurance that their timeframes for both old and new keys are reliable.
3.0. APPROACH TO SECURITY AND STABILITY
Stability and security of the Internet is an important consideration for the registry system. To ensure that the registry services are reliably secured and remain stable under all conditions, DMEL takes a conservative approach with the operation and architecture of the registry system.
By architecting all registry services to use the least privileged access to systems and data, risk is significantly reduced for other systems and the registry services as a whole should any one service become compromised. By continuing that principal through to our procedures and processes, we ensure that only access that is necessary to perform tasks is given. ARI has a comprehensive approach to security modeled of the ISO27001 series of standards and explored further in the relevant questions of this response.
By ensuring all our services adhering to all relevant standards, DMEL ensures that entities which interact with the registry services do so in a predictable and consistent manner. When variations or enhancements to services are made, they are also aligned with the appropriate interoperability standards.